The Engineering Design Log: A Digital Design Journal Facilitating Learning and Assessment

Dr. Roxanne Moore
Dr. Meltem Alemdar
Dr. Jeremy Lingle
Dr. Sunni Newton
Mr. Jeffrey Rosen
Dr. Marion Usselman

Funded by NSF Award #1238089
Why EDP Logs?

• Concise, scaffolded guide of student process
• Allows for self-reflection
• Used in both science and engineering classes
• Defends non-working prototypes/no artifact
• Requires instruction for usage
• Provides a gradable resource

Funded by NSF Award #1238089
Engineering Notebooks

The evolution of the eEDPL

- Manage quantity (about 200 for semester)
- Intermediate submission of items
- Structure to the entries

- Paper based 3-ring binder notebooks
 - Student sabotage
 - Drop = loss of pages and organization
- Composition/Spiral Notebooks
 - Identification of owner
 - No method to insert pages
Engineering Design Process (EDP)

Identify the Problem
- Problem Statement
 - What design problem are you working on?

Understand
- Design Requirements & Goals
- Background Research
- Customer Needs

Ideate
- Brainstorm Design Ideas
- Sketch to Communicate
- All Ideas Welcome

Evaluate
- Design Meets the Requirements?
- Design Strengths/Weaknesses
- Use a Decision Tool to Rate Designs
- Select Promising Design(s)

Prototype & Test
- Detailed Technical Drawings
- Mathematical and Computer Models
- Build Physical Model
- Requirement Tests

Communicate your Solution
- Share Your Solution
- Justify Your Design Using Collected Data
- Provide Design Process Documentation
The eEDP Log:
electronic Engineering Design Process Log

Tabbed spreadsheet aligned with EDP
Formatted and auto-populating example

Funded by NSF Award #1238089
EDP Log

Scoring and Grading

• EDPPSR (Goldberg 2011)
• Modified for both High and Middle School use
• Revised to 8 elements
• 0-5 for High School and 0-4 for Middle School
• Student checklist aligned to rubric
• *Rubric is designed for GROWTH (not as absolute scale)!*

Funded by NSF Award #1238089
Teachers’ Perspective

- 6 teachers varying utilization
 - Teacher led class activity
 - Student completion for each activity
- Benefits at both age groups
 - Organization and documentation skills
 - Improved understanding of EDP
 - Informed design decisions
- Challenges using EDPL
 - Student resistance
 - Student writing, reading and critical thinking skills
 - Technology disruption

Funded by NSF Award #1238089
Results

EDPL Descriptive Statistics for Middle School Logs, Max Score =3, n=20

<table>
<thead>
<tr>
<th>Element</th>
<th>Mean</th>
<th>SD</th>
<th>Range(min,max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Identify the problem</td>
<td>0.8</td>
<td>0.89</td>
<td>(0,2)</td>
</tr>
<tr>
<td>B: Understand</td>
<td>0.85</td>
<td>0.67</td>
<td>(0,2)</td>
</tr>
<tr>
<td>C: Ideate</td>
<td>1.15</td>
<td>0.67</td>
<td>(0,2)</td>
</tr>
<tr>
<td>D: Evaluate</td>
<td>0.75</td>
<td>0.85</td>
<td>(0,2)</td>
</tr>
<tr>
<td>E: Prototype & Test</td>
<td>0.25</td>
<td>0.44</td>
<td>(0,1)</td>
</tr>
<tr>
<td>F: Iterate</td>
<td>0.05</td>
<td>0.22</td>
<td>(0,1)</td>
</tr>
<tr>
<td>G: Progression</td>
<td>0.05</td>
<td>0.22</td>
<td>(0,1)</td>
</tr>
</tbody>
</table>

Element H: Communicate your solution was not scored.
Conclusions

• Use of EDP Log needs to have clear purpose and expectations for students
• Pedagogical and assessment value clear to teachers
• A separate reflective aspect needs further work
• Explicitly incorporate EDP Log use in the curricula
Conclusions

• Use of EDP Log needs to have clear purpose and expectations for students
• Pedagogical and assessment value clear to teachers
• A separate reflective aspect needs further work
• Explicitly incorporate EDP Log use in the curricula
Questions

• AMP-IT-UP is funded by the NSF MSP award #1238089

• www.ampitup.gatech.edu

• jeff.rosen@ceismc.gatech.edu
Identify the Problem

Problem Understanding

Document your design requirements here, with a date and an appropriate source. This will provide a dated list as you add requirements later in the process.

<table>
<thead>
<tr>
<th>Date</th>
<th>Requirement</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prototype Number</td>
<td>Concept Tested</td>
<td>Date Tested</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Requirements</th>
<th>Test Performed</th>
<th>Meets?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Testing Result data</th>
<th>Testing Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial</td>
<td>Result</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Based on your results above, are there additional requirements or functions for your design?

New Requirement:

This will need to be added to your requirements list on the Identify & Understand tab